Commensurability classes of discrete arithmetic hyperbolic groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds

This sharpens [10], where it was shown that the complex length spectrum of M determines its commensurability class. Suppose M ′ is an arithmetic hyperbolic 3-manifold which is not commensurable to M . Theorem 1.1 implies QL(M) 6= QL(M ′), though by Example 2.1 below it is possible that one of QL(M ′) or QL(M) contains the other. By the length formulas recalled in §2.1 and §2.2, each element of ...

متن کامل

Arithmetic Hyperbolic Reflection Groups

A hyperbolic reflection group is a discrete group generated by reflections in the faces of an n-dimensional hyperbolic polyhedron. This survey article is dedicated to the study of arithmetic hyperbolic reflection groups with an emphasis on the results that were obtained in the last ten years and on the open problems.

متن کامل

Commensurability Classes of Twist Knots

In this paper we prove that if MK is the complement of a non-fibered twist knot K in S, then MK is not commensurable to a fibered knot complement in a Z/2Z-homology sphere. To prove this result we derive a recursive description of the character variety of twist knots and then prove that a commensurability criterion developed by D. Calegari and N. Dunfield is satisfied for these varieties. In ad...

متن کامل

Finiteness of Arithmetic Hyperbolic Reflection Groups

We prove that there are only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups.

متن کامل

Commensurability of hyperbolic manifolds with geodesic boundary

Suppose n > 3, let M1,M2 be n-dimensional connected complete finitevolume hyperbolic manifolds with non-empty geodesic boundary, and suppose that π1(M1) is quasi-isometric to π1(M2) (with respect to the word metric). Also suppose that if n = 3, then ∂M1 and ∂M2 are compact. We show that M1 is commensurable with M2. Moreover, we show that there exist homotopically equivalent hyperbolic 3-manifol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2011

ISSN: 1661-7207

DOI: 10.4171/ggd/147